del Number		SEISMIC ICD® ACCEL FROMETER								
393B12	SCISMIC ICPW ACCELEROMETER									
Performance Sensitivity(± 10 %) Measurement Range Frequency Range(± 5 %) Frequency Range(± 10 %) Frequency Range(± 3 dB) Resonant Frequency Phase Response(± 5 °) Broadband Resolution(1 to 10,000 Hz) Non-Linearity			ENGLISH 10,000 mV/g 0.5 g pk 0.15 to 1000 Hz 0.10 to 2000 Hz 0.05 to 4000 Hz ≥ 10 kHz 1 to 1000 Hz 0.000008 g ms ≤ 1 %	\$1 1019.4 mV/(m/s²) 4.9 m/s² pk 0.15 to 1000 Hz 0.10 to 2000 Hz 0.05 to 4000 Hz ≥ 10 kHz 1 to 1000 Hz 0.00008 m/s² rms ≤ 1 %	[1] [2]		nave identical speci	fications and ac	cessorie	
Environmental Overload Limit(Shock) Temperature Range Temperature Response Base Strain Sensitivity Electrical Excitation Voltage Constant Current Excitation Output Impedance Output Bias Voltage Discharge Time Constant Settling Time			± 5000 g pk -50 to +180 °F See Graph ≤ 0.0005 g/με 18 to 30 VDC 2 to 20 mA <1500 ohm 8 to 12 VDC ≥ 3.5 sec <60 sec	± 49,050 m/s² pk -45 to +82 °C See Graph ≤ 0.005 (m/s²)/µε 18 to 30 VDC 2 to 20 mA <1500 ohm 8 to 12 VDC ≥ 3.5 sec <60 sec	[1]				details.	
al Noise(10 Hz) al Noise(100 Hz) al Noise(1 kHz) cal Isolation(Case cal			0.32 µg/√Hz 0.13 µg/√Hz 0.10 µg/√Hz ≥ 10 ⁸ ohm Ceramic	3.1 (µm/s²)/√Hz 1.3 (µm/s²)/√Hz 1.0 (µm/s²)/√Hz ≥ 10 ⁸ ohm Ceramic	[1] [1] [1]		-			
g Material g dex x Height) t cal Connector cal Connection P ing Thread	Position		Stainless Steel Hermetic 1 3/16 in x 2 3/16 in 7.4 oz 2-Pin MIL-C-5015 Top 1/4-28 Female	Shear Stainless Steel Hermetic 30.2 mm x 55.6 mm 210 gm 2-Pin MIL-C-5015 Top 1/4-28 Female 2.7 to 6.8 N-m	[1]					
		Sensitivity Deviation(%)	7ypical Sensitivity D 20 10 -0 -10 -50 -10 30	eviation vs Temperature	190	Model 081B20 Me Model 085A31 Pr Model ACS-1 NIS Model ACS-4 Sin	counting Stud, with sofective Thermal Jaint Traceable frequengle-axis, low frequency low freq	acket (1) ncy response (10 ncy phase and a 28 to M6 X 0.75 Sales:	0 Hz to u amplitude (1)	
	mance vity(± 10 %) rement Range ncy Range(± 5 %) ncy Range(± 5 %) ncy Range(± 10 ncy Range(± 3 d ant Frequency Response(± 5 °) rand Resolution(* nearity erse Sensitivity onmental ad Limit(Shock) rature Range rature Range rature Response strical ion Voltage int Current Excita Impedance Bias Voltage rge Time Consta g Time al Noise(10 Hz) al Noise(10 Hz) al Noise(10 Hz) al Noise(10 Hz) al Noise(10 Kz) cal Isolation(Castical g Element g Geometry ng Material g elex x Height) t cal Connector	mance vity(± 10 %) rement Range ncy Range(± 5 %) ncy Range(± 3 dB) ant Frequency Response(± 5 °) rand Resolution(1 to 10,000 Hz) remental and Limit(Shock) rature Range rature Rasponse strain Sensitivity rical ion Voltage ric Current Excitation Impedance Bias Voltage rge Time Constant g Time al Noise(1 Hz) al Noise(100 Hz) al Noise(100 Hz) al Noise(100 Hz) al Noise(100 Hz) al Noise(1 kHz) cal Isolation(Case) ical g Element g Geometry g Material g Hex x Height) t cal Connector cal Connector cal Connector cal Connector property g Torque	mance vity(± 10 %) rement Range ncy Range(± 5 %) ncy Range(± 10 %) ncy Range(± 10 %) ncy Range(± 5 °) nand Resolution(1 to 10,000 Hz) nearity erse Sensitivity conmental ad Limit(Shock) rature Range rature Response strain Sensitivity rical ion Voltage int Current Excitation Impedance Bias Voltage rge Time Constant g Time al Noise(1 Hz) al Noise(10 Hz) al Noise(100 Hz) al Noise(10 Hz) al Noise(1 kHz) cal Isolation(Case) ical g Element g Geometry ng Material g Hex x Height) t cal Connector cal Connector cal Connector cal Connection Position ing Thread ing Torque	### SEIS ##################################	SEISMIC ICP® AC SI SI	### SEISMIC ICP® ACCEL #### Mily (± 10 %) #### 10,000 mW/g 10,000	SEISMIC ICP® ACCELEROME Timence	### SEISMIC ICP® ACCELEROMETER ##################################	### SEISMIC ICP® ACCELEROMETER #### CPUIDAL VER ###################################	

cifications and accessories as listed for the standard model below. More than one option may be used.

Revision: J

ECN #: 25881

shoulder (1/4-28 to 1/4-28) (1)

ency response (10 Hz to upper 5% point). (1)
lency phase and amplitude response calibration. (1)
l-28 to M6 X 0.75 (1)

Spec Number: 393-2120-80

3425 Walden Avenue, Depew, NY 14043

Phone: 716-684-0001 Fax: 716-685-3886

E-Mail: vibration@pcb.com

All specifications are at room temperature unless otherwise specified.
In the interest of constant product improvement, we reserve the right to change specifications without notice. ICP® is a registered trademark of PCB Group, Inc.

Model Number